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ABSTRACT

High order accurate centered flux approximations used in the computation of numerical

solutions to nonlinear partial differential equations produce large oscillations in regions of

sharp transitions. In this paper, we present a new class of filtering methods denoted by ENO-

LS (Essentially Nonoscillatory Least Squares) which constructs an upgraded filtered solution

that is close to the physically correct weak solution of the original evolution equation. Our

method relies on the evaluation of a least squares polynomial approximation to oscillatory

data using a set of points which is determined via the ENO framework.

Numerical results are given in one and two space dimensions for both scalar and systems

of hyperbolic conservation laws. Computational running time, efficiency and robustness of

the method are illustrated in various examples such as Riemann initial data for both Burgers'

and Euler's equations of gas dynamics. In all standard cases the filtered solution appears to

converge numerically to the correct solution of the original problem. Some interesting results

based on nonstandard central difference schemes, which exactly preserve entropy, and have

been recently shown generally not to be weakly convergent to a solution of the conservation

law, are Mso obtained using our filters.
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1 Introduction

Numerical improvements in the computation of high order accurate numerical solutions to

nonlinear hyperbolic conservation laws have been recently obtained. Hence, following Total

Variation Diminishing (TVD) schemes, the Essentially Nonoscillatory (ENO) method has

been introduced and proved to be very efficient in the computation of high accurate numerical

solutions for several types of physical problems including Computational Fluid Dynamics

(CFD) problems or front propagation using the Hamilton-Jacobi framework. However, these

higl_accurate methods use a lot of computational time. For that reason, filtering methods

were developed, beginning in the late eighties. The first one, described by B. Engquist

and B. Sjogreen in [1], uses simple TVD and conservation properties to correct nonphysical

spurious oscillations from one time step to another. The correction step consists in pushing

numerical data points up or down to an acceptable level while preserving conservation. In [5],

we presented a new class of filtering methods of any order of accuracy. Our method relies

on switching fluxes at locations in which spurious oscillations are detected. This method

was observed to be very efficient and its cost relatively low since high order ENO fluxes are

evaluated at a few points only- a central difference method is used most often.

In this paper, we investigate some interesting computational properties of centered schemes

after numerical oscillations have developed and propagated for some time. We define a new

class of filtering methods that can be applied to highly oscillatory numerical solutions. This

relies on the construction of an ENO stencil of points ([2, 7, 8]) which is fitted with high de-

gree polynomials from a least squares procedure. Our numerical filter is capable of smoothing

oscillations having large amplitude and high frequency, but without removing sharp singu-

larities which are crucial components of these solutions. Furthermore, the filtered solution

seems to retain the oscillatory solution properties of the unfiltered schemes in some special

"entropy preserving" cases as defined in [3] by J. Goodman and P. D. Lax, and in [6] by

J. Liu and D. Levermore. We investigate some numerical examples using several centered

approximations in order to illustrate the former property. The main conclusion indicates

that for standard central differences, our filtered solution always converges accurately to the

strong limit, whereas the predicted oscillatory behavior is retained even after using our filter

in the examples of [3, 6].

Our main test problems will be inviscid Burgers' equation and the inviscid Euler equations

of gas dynamics. We first consider Burgers' equation:

U 2

v,+ (y)= =o,
with smooth initial condition U(x, O) = U0(x), Uo E C_(O, 1), and periodic boundary con-

ditions. We will discuss the main properties of the numerical solution obtained from some



schemesbasedon the approximatefluxes:

Yj+½= _(U)+,'2 + U]), (2)

= _-_(V)+, -_- __(U)+ 2 it- U]_l), (3)F_+i ' _ u}))-' _

Fj+½ 37 (rr: _(u)+_ + + _(u)+3 + u]__), (4)= v]_,) '

Fj+½ = 1(U]+,6 + U_Uj+, + U]), (5)

= ½vjvj+,.Fj+½ (6)

The fluxes (2,3,4) are just standard central differencing of second, fourth and sixth order

of accuracy, respectively; while (5,6) are the interesting examples analyzed in [6] and in [3],

respectively. The oscillatory solution obtained from any of these fluxes is then corrected by

the ENO-LS method, preserving the formal order of accuracy.

The Euler equations of gas dynamics:

Ut + (F(U))_ = 0, (7)

u(x,0) = u0(x),

are to be solved for t > 0 and x in some interval Ft with appropriate boundary conditions,

where

F(U) = vU + (O,p, vp) T

and U = (p,q,p), p is density, q is momentum, v is velocity, and p is the pressure. In this

work, we use conventional second, fourth and sixth order central differencing with ENO-LS

post processing applied to nuler's equations. See [4] for an analysis of the oscillatory Von

Neumann-Richtmyer scheme approximating Euler's equation, [9].

2 The ENO-LS Filter, Algorithms

The ENO-LS method mimics the construction of ENO polynomials but without involving

the evolution equations. In short, we follow the algorithm just below:

Algorithm 2.1 ,, t.) Compute N times the numerical solution of

U_+ A(U)_= o

u(_,o)= Uo(x)

i.e we let VjP = Uo(xj), and compute VjN = I(V°,NAt), for all j = 1,...,n, where I

is the solution semigroup operator that transforms the initial pointwise data Vj° to VjN

after N iteration time steps.



• 2.) Filter the numerical solution computed in step i.) by an iteration procedure similar

to Jacobi or Gauss-Seidel elliptic solvers; first let:

wo: v/,

for all j = O, ...,n, then make use of primitive variables:

J

u_ = _ w_x_, (s)
i----O

andfinallyconstruct, sequence{g_51}m--0,...,Mso that

gj+_l= E(gm, Urn+l), (9)

where M is defined from the stopping criterion:

for m = O, ..., M - 1, where c is a small parameter of order Ax _ and

U._ _ U._

w;'= _+_ '-_ (lo)
Axj

Finally,let _' = W?', for y = 1,...,_.

• 3.) Go to step 1.) unless t = t,_.

We notice that relation (10) and the use of primitive variables (8) implies the conservation

property of the sequence {Wj}j=I,...,,_, i.e the resulting finite difference scheme is always in

conservation form. Moreover, the number of correction steps M can be initially fixed so that

the ratio N is as large as desired. The operator E is a non trivial linear combination of

Uj'_½, U._ +_, for some j, as in point Jacobi or Gauss Seidel method. In the Jacobi procedure

we have:

=E(vi. w+_ ,..., j_½,uj+_,..., ___),

and either

,m+, _+_ _m+_ ,_ U_ , )
_j+_ = E(U , ..., v___, _+_, ..., ,-_
TTm+I U rn Tun+I TTm+I'__,+_ = E(U_,..., __½,vj+½,...,_ __

for the Gauss-SeideI method.

if j varies from 0 to n, or

in the reverse direction;



i
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An important property of the ENO-LS algorithm comes from the fact that the corrected

solution Vj N satisfies a conservation equation. To see that, we first use the relation (10)

which can be rewriten as:

• 1 ½"U ,...,(' J+_ _ 2
WF+I = W2

Axj

(11)

and then discuss the construction of the least squares process. In (11), the pair of integers

(r+, s±) limit the width of the stencil used in the evaluation of the least squares polynomial.

The appropriate stencil is defined_ as in the ENO algorithms (refer to [7], [8]). We briefly

indicate the main steps leading to such a polynomial: We first compute the divided differences

table of W m and define the ENO stencil of points in the region which is the smoothest for

successive space derivatives of Wm. We denote the ENO stencil in the set (xj__, ..., xj+,),

where r + s = p - 1, and p is the number of data points that we want to take into account

in the evaluation of the least squares polynomial. Hence if we denote this polynomial by

PJ+½(x) = _"_ Y/_,,(x), (12)
i=0

where (_P0,...,_Pq) are the basis functions of some polynomial space of degree q, then the

unknown coefficients Y = (Y0,..., Yq) are solutions of the linear system:

CJ+½y = F j+_,

• i
where Ca+_ is a (q + 1) × (q + 1) square matrix, FJ+½ is a q + 1 column vector, and both

can be computed from the basis functions:

C J+½ =

= El=-. fj+_+icPk(xj+½+i)"

l'Tm+l
The updated value _j+½ follows from letting x = xj+½ on the previously constructed LS

polynomial:

q

ujm+l -_. pj+_ " "=
i=0

The global conservation feature follows provided that we write:

S

TT m+l Of + 1 TTm+ t
c,j+_ = E . 1 tt-/. 1 ,:+_+ :+_+t

t=--r

where l = 0 or 1 depending on whether the Jacobi or the Gauss-Seidel method is used, and

J+½ q q nJ+_ ,
= E E',,,,

i=0 k=O



where DJ+½ = (CJ+½) -x.
½

Note first that the coefficients {aj+½+t}t=_r ..... , form a sequence of bounded real numbers,

and second, that the basis functions (_0, ..._q) can be appropriately chosen as a sequence of

Chebyshev polynomials or some other set of orthogonal polynomials. The last choice permits

us to compute directly the coefficients aJ+} without inverting the matrix CJ+½:

aJ+½+t = i=O C j+½
"J i,i

This yields a fast algorithm since matrix inversions are no longer needed.

We now present an extension of algorithm 2.1 to two space dimensions. The simplest

possible extension would be to apply the previous algorithm in two sweeps. The first one

will freeze one coordinate and correct the oscillatory solution with respect to the other free

variable. The second one will simply reverse the role of each variable. This method, while

simple, has difficulties near curved shocks. We shall use instead a fully two dimensional ENO-

LS filtering algorithm. The latter will provide the construction of least squares polynomials

in two space dimensions using a set of points which is chosen as the intersection of one

dimensional ENO stencils of data points in each separate direction. The algorithm below

describes our procedure.

Algorithm 2.2 • 1.) Compute N times the numerical solution of

Ut+ A(U) + B(U)u = 0

U(x,y,0) = Uo(x,y)

using a very simple numerical method and then let V..°.,,_= go(xj, yl), and Vi,N =

I(V°,NAt), for all j = 1,...,nz, and i = 1,...,n_, where I is the solution semigroup

operator that we have already encountered in previous algorithm.

• 2.) Let W P.,,j= V_,N, and filter M times the primitive variable

i,j

, = Wt, /xzk/Xy ,
l,k=O

by a dacobi or point Gauss-Seidel iteration procedure, i.e perform:

(13)

Um+l E(U TM Urn+l),• 1 • 1 _"
t+i,3+ _

for positive integers m. Iterate as long as I]W m+_ - Wmll <_ e, m = O, ..., M - 1, and

finally let the filtered solution: Vi,-;_= wM for j = 1,..., nl, i = 1, n2.
i_? I "'',

The construction of the two dimensional least squares polynomial is as follows:



• 2.1) At the location (xi+½,yj+_) , compute the ENO stencils of points

{(xi__,,yj),...,(Xi+l+s_,yj)}, and {(xi, yj-T_),...,(xi, yj+l+s_)}, for r:_ + s,: + 1 = nx

and r v + s u + 1 = n2, where nl and n2 are the preset maximum number of points along

the x and y axis. These sets of points form two segments crossing at (xi, yj). Then,

define the x and y ENO stencils of points along these y and x segments, respectively.

The two dimensional ENO stencil is taken as the intersection of the union of the pre-

definedx andy one dimensionalEgo stencils(refertofigure (#). The leastsquares
polynomial is then simply defined on this two dimensional ENO stencil and is set to

p(i+½J+½)(x,y) = Eqk=oYk_pk(x,y). Again, the unknowns coefficients Yk, k = 1,...,p

are computed by solving the linear system C(i+½j+I)Y = F (i+½J+½).

/.Tm+l • I • 1p(,+_o+_)• 2.2) Let ,.. _ . 1 = (x_+½, yj+½).

• 2.3) Recover the conservative solution

vm+l /-TroT1 TTm+I ll'm+l
•-1 .-1 +v i 1 . 1 --v.-1 . 1 --_i__;,J.

W_+I _ '-"_,;*_" -_,;-_ '*_,J-_" 2,_-2 (14)
"J - AxAy '

for m = O,...,M- 1.

• 3.) Go to step i.) unless t = t_,,:.

An example of two dimensional ENO stencil is given in figure 1. The main interesting

feature of such construction is based on the localization of the least oscillatory part of the

solution within the much larger rectangle [xj__, xj+_] x [yi_T_, y_+,_].

In section 4, we investigate the two dimensional Burgers' equation and study numerical

propagation of a shock along the radial axis. With centered fluxes, some spurious numerical

oscillations propagate in the direction of the flow; however the two dimensional ENO-LS

filtering method is able to filter all these oscillations while still giving the correct location of

the curved shock wave.

Next, we consider hyperbolic systems of conservation laws exemplified by the inviscid

Eulers' equations of compressible gas dynamics:

u, + F(U) = o,

u(x,o)= Uo(x)

for which there exists a complete set of real eigenvectors and eigenvalues; i.e VF(U) =

P-lAP, where A is a diagonal matrix with entries )_1 <_ £2... _< Ad, and P is a matrix whose

columns define a complete set of eigenvectors of the system. Note that the eigenvalues can be

multiple, which is the case for the Euler equations of gas dynamics in two space dimensions.
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Figure 1: 2D ENO-LS stencil.

Using the eigenvector decomposition, a field by field approach is used, i.e the fluxes will be

corrected in each fields (our filter sometimes failed to remove oscillations near strong shocks

when applied to the conserved quantities). Briefly, we proceed as follows:

Algorithm 2.3 (Field by field ENO-LS method)

and define the primitive variable Vj+½ = _i=1 W'_Ax.

the left and right eigenvectors L_?+(k),__ Rf+(_k) , for k = 1, ..., d (d is the2-2.) Compute

number of equations) of the Roe matrix (see e.g. [2]) A(W_,Wj_+I), and decompose

the primitive vector Vj+_ along each characteristic field:

a_k) r m,(k),rm= _+½ "--j+ ½+_(k)
m m,(k) ,, m,(k)

Qj+½= E_=lcr" 1 ". 1 ,

for which we have frozen the index j in order to get the same decomposition for all

neighboring points xj+½+l(k) , for I(k) = -r(k), ..., +s(k) involved in the calculation of

the least squares polynomial which is constructed in step 2-3.).

• _-1.) Let W m = (W_, ..., W_) T,

• 2-3.) Select an ENO stencil ofp points, i.e {xj-_(k), ..., xj+,(_)}, for r(k) + s(k) + 1 = p;

and then define the least squares polynomial P(J+_) of degree q so that:

t_'j+ ½-_(k), "", aj+½+,(k), xj+_).

= 7
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• 2"4.) Transform back the filtered field by field solution to the primitive vector:

d
Vm+l , m+l,(k)_m,(k)

s+½=_+_ "_+½'
k=l

and finally recover the desired physical variables:

vm+ 1 __ _d'm+l

W .m+l = --Jq- _ --j--
a AX

• 2-5.) Iterate until the stopping criterion

(15)

Ilwm+_- w_ll _<e,

for m = o,...,M - 1, i_ reached;and.SnaUylet _/ = W_.

Note that this algorithm can be extended to two space dimensions by correcting separately

oscillatory fields involved in the x and y fluxes, respectively. Moreover, this algorithm does

not make use of the evolution equations but does use the eigenfunction decomposition in

order to track efficiently the propagation of spurious oscillations.

To conclude this section, we indicate that we mainly Supposed that the numerical oscil-

lations always propagate with the flow speed along local characteristic fields and that the

amplitudes of such oscillations are not too large so that the oscillatory solution does not be-

come unbounded, e.g., negative density and/or pressure is not allowed. In all our numerical

experiments, we had to turn the filter on not only to recover an acceptable final solution but

also to reduce the amplitude and frequency of spurious oscillations during the calculations.

Hence, we usually preset the value of the ratio My-in the numerical experiments just after

singularities have developed, o:-

3 Numerical Convergence Study

In this section, we investigate the numerical convergence of the approximate solution com-

puted via the ENO-LS algorithm given an initial oscillatory solution which has been eval-

uated from one of the standard centered fluxes (2), (3), (4); or from one of the "entropy

conserving" fluxes (5) or (6). As test problem, we study first the numerical evolution of

Burgers' equation (1) in one space dimension:

U 2

u,+(-TL =0,

with initial condition U(x, O) = sin2_'x, in the domain [0, 1], and extend the solution by

=!periodicity outside 0 and 1. A shock wave develops at t = _,_at the point x 4"

8
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We first display in figure (2) the solution using 100 cells and a CFL condition of !2

for a second order centered difference (CD) scheme using the flux (2), and then correct

that solution by applying 7 iterations of the ENO-LS algorithm. Note first that the exact

solution is perfectly recovered with exact location of the singularity because of the use

of primitive variables in algorithm 2.1; second, these results are obtained for the set of

coefficients (p, q) = (13, 2), which implies that the corrected solution is only second order

accurate in smooth transition areas; third, the upper right plot displays the corrected solution

when both (3,2)CD and (3,2)ENO schemes are sequentially used. In that case, we correct by

5 ENO iterations after every 25 CD steps. This method for filtering oscillations is also very

efficient for one dimensional problems (refer to table 1); however, many more ENO iterations

are needed in two dimensions. Basically, 10 ENO iterations are needed after every 10 CD

steps in order to recover an accurate solution for the two dimensional Burgers' example 4.3,

which is a quite expensive technique compared to the overall cost induced by the ENO-LS

method.

We shall discuss the results obtained with larger values of q in section 4 in which we

investigate numerical order of accuracy of the filtered solutions from the ENO-LS algorithm.

Also, a similar study is investigated as the number of evaluation points p increases.

In figure (3), we plot the numerical solution before and after the filter steps when

n = 1000. Again, convergence to the physical solution is reached within 10 Gauss Sei-

del iterations. Note that this number increases by a factor of nearly 2 when Jacobi iterations

are used.

In figures (4) and (5), we show the filtered solutions which were initially computed using

the standard (3,4)CD and (3,6)CD schemes (fluxes (3) and 4)), respectively. Note that the

corrected solution is well reconstructed in smooth regions while a smearing of the shock over

about 10 cells is observed. This smearing can be primarily explained from the high (fourth)

degree least squares polynomials (q = 4) used in those experiments.

Our second numerical test is devoted to showing that the filtered solution computed via

the numerical flux (5):

= + ujvj+ +Fj+ ' V]).

does not converge to the physical solution. It was observed in [6] that this scheme preserves

1U2). It was also shown there that themass and entropy (which in this case is taken to be

numerical solution does not converge to a weak solution of the original problem. Basically,

as the mesh size tends to zero, some spurious oscillations are still visible near the shock and

cannot be removed. We ran the last two previous experiments but used the approximate flux

(5). We plot the numerical results in the figures (6) and (7) when n = 100 and n = 1000,

11



respectively.For 100cells (figure (6)), the oscillationsnear the shockareall smoothedout;

however,the location of the shockis smearedoverabout 10cells. This resultswereobtained

for the sameset of coefficients(p,q) = (13, 2). Indeed, the solution is not well reconstructed.

As the number of cells increases, the filtered solution is well reconstructed except near the

shock. Numerical oscillations are still visible and cannot be removed. Note that the results

visualized in figure (7) are given after 16 Gauss Seidel iterations which is much more than

we needed when standard centered differences are taken.

Our final Burgers' equation test deals with a similar convergence failure property to the

correct physical solution when the flux approximation (6) is implemented. The numerical

flux is:

1

Fi+ ½ = -_UjUj+I.

This scheme again conserves both mass and entropy (this time the entropy is taken to be

log Uj), and it was shown in [3] that the numerical solution does not converge to a weak

limit of the original problem as the stepsize Ax tends to zero. In the numerical experiments,

we noticed that the amplitude of the oscillations grew very fast and was rapidly becoming

unbounded. The results are plotted in the figures (8) and (9) for n = 100 and n = 1000,

respectively. Note that, in the case n = 100, the filtered solution is again not very well

reconstructed, and for 1000 cells, some oscillations are still visible after 20 ENO-LS iterations

on the right of the shock. Moreover these oscillations could not be removed, even after many

additional filtering iterations.

Thus our techniques have been observed to construct converging sequences of filtered

numerical solutions towards the expected solution given initial oscillatory data that has

been computed from a central difference flux approximation. Our hope is now to show that

our method is not only robust but is also fast. This is the topic of last section.

4 Time Efficiency of ENO-LS Algorithms

In this section, we want to test the ENO-LS filtering method for several test problems

involving nonlinear hyperbolic systems of conservation laws. We will focus our attention

on comparing precisely the CPU times of the ENO-LS method versus more classical and

filtered methods. Among them, we will consider the straightforward central difference (CD)

method, the expensive ENO (Essentially Nonoscillatory) technique [7, 8], and our FM scheme

(Filtering Method) [5]. We will run three examples for 1D and 2D Burgers' equation, and

for Eulers' equations of compressible gas dynamics.

12
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Type of Scheme
CD
CD

ENO-RF
ENO-RF
FM
FM
FM
FM

CD+ENO (40,5,20)
CD+ENO(40,1,10)
CD+ENO (20,7,10)

ENO-LS(7,2)
ENO-LS (7,2)

ENO-LS (7,3)
ENO-LS (7,3)

Order of Accuracy

(3,2)
(3,4)

(32)

(3,4)
(2,2)
(3,4)
(3,2)
(3,4)
(3:2)
(3,2)
(3,4)

CPU time x 10-2
0.56

0.72

# of corrections, comments
CD = Centered Differences

RF = Roe Fix, Entropy fix1.11

1.68 -

0.76 FM = Filtering Method, 3% Corrections
1.07 4% Corrections
1.40 100% Corrections = full ENO

2.04 100% Corrections
0.'74 40CD, 5ENO, 20 final ENO

0.58 40CD, 1ENO, 10 final ENO
0.99

(2) 1.84

(3)
(3)

20CD, 7ENO, 10 final ENO

(p, q)= (7, 2), LU Inversion
Orthogonal polynomials(2) 0.65 .

2.5 LU Inversion

0.89 Orthogonal polynomials

Table 1: CPU times of CD, ENO, FM and ENO-LS methods.

4.1 1D Burgers'

We first compare the time efficiency of several numerical schemes for the 1D Burgers' equation

(1). In table (1), we show the average computational time per iteration for 100 mesh points

for the CD, ENO, and FM schemes with several correction angles (see [5]), and for various

combinations, performing alternatively some centered difference and some ENO steps. The

notation CD+ENO (40,5,20) simply means that the calculation starts with 40 CD steps,

followed by 5 full ENO iterations, and back to the centered scheme; the last 20 steps of

the calculations are finally performed by the ENO method in order to recover an acceptable

solution. Note that all coefficients displayed in this table are tuned so that the numerical

solution is high order accurate in smooth regions and no spurious oscillations are detected.

The contents of this table need a few comments. First of all, the fastest algorithm is the

one based on central differences. This is indeed not surprising since only one Fortran instruc-

tion is needed in the coding of the approximate flux. Second, postprocessing a numerical

solution computed from the CD scheme by an ENO method can be very efficient for lower

orders. For a second order method, only one ENO iteration after every 40 CD steps has to be

implemented in order to reduce sufficiently the amplitude of oscillations. Note however that

for the fourth order method, 7 ENO iterations were needed every after only 20 CD steps.

In fact, if these spurious oscillations are not regularly cut off, the final ENO iterations may

not recover the correct numerical solution. Third, the ENO-LS filtering method is the most

costly when full LU inversion of the CJ+½ matrix is performed. However, when orthogonal

basis functions are introduced, the ENO-LS method is competitive with respect to the fast

CD scheme. Note moreover that ENO-LS correction steps have to be performed at a few
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Type of Scheme (q,p) # of iterations L x and L ¢¢ orders.

CD (3,2) (2,5) i2 1.81 and 1.63
CD (3,2) (2,9) 9 1.75 and 1.50

7 2.19 and 1.9CD (3,2)
CD (3,4)

(2,13)
(3,5) 15 1.59 and 1.40
(3,9) 12 2.41 and 2.33
(3,13) 7 2.80 and 2.79

CD (3,4)
CD (3,4)

Table 2: Local L 1 and L _ order of accuracy.

times only. Finally, after running many experiments, we noticed that if the ratio a becomesq

too large, then shocks havea tendency to spread over a large number of cells. Again, there

is a compromise that needs to be reached for fast convergence; this depends on the large

value of the ratio _, and the approximation of the shape near shocks for which p needs to

be slightly smaller. Note that in most of experiments, the ratio q_C [4, 6] was optimal.

Now, we want to measure the order of accuracy of the ENO-LS solution. To do so, we

measure from computations the L 1 and L _° errors in the slabs [0.10, 0.24] and [0.26, 0.30].

Numerical orders are shown in table 2.

Several comments about these results are now discussed. First of all, as the number of

evaluation points increases, the better the quality of the results and the faster convergence

is reached. Indeed, we have to pay the price of higher computations which are required to

construct the coefficients involved in the CJ+½ matrix and in the vector FJ+½. On the other

hand, faster calculations can be obtained provided that the values of p and q differ only

slightly, i.e p = q + l, l = 1,2, 3, ..., but local accuracy becomes obviously poor. Again, the

optimal ratio seems to belong to the interval [4, 6].

4.2 Example 2. Euler Equations of Gas Dynamics

The second test problem is devoted to the Euler equations of gas dynamics in one space

dimension. We consider the initial condition given in example 8 of [8], that is:

p = 3.857143, q = 2.629369, p = i0.3333333 when x < -4

p = 1 + csin5x, q = 0,p = 1. when x >_ -4

When e = 0, a pure Mach 3 shock is moving to the right from the initial discontinuity

x = 4. When c = 0.2, we not only have a Mach 3 shock propagating to the right, but have as

well a succession of weaker rarefaction and shock waves propagating to the left. Numerical

results for the ENO and FM methods of high order of accuracy can be found in [8] and in [5],

respectively. We ran the same problem using 240 CD iterations and then plotted the results

in figure (10). Next, we correct this highly oscillatory numerical solution by performing 7
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Figure 10: (3,2)CD scheme.

ENO-LS correction steps. In this experiment, we use (p, q) = (13, 3). The filtered solution

is visualized in figure (11). Note that the pressure, velocity, and entropy are quite well

reconstructed, whereas the density is not perfectly recovered near the strong shock for which

some physical oscillations should remain ( refer to [10, 11]). However, we should note the

remarkable improvement obtained from the solutions displayed in figures (10) and (11).

In figures (12) and (13), we use in sequence 50 CD steps and only one ENO iteration

for second and fourth order methods before correcting the final oscillatory solution. The

oscillatory solution is now postprocessed by 3 ENO-LS iterations. The filtered numerical

results now look fairly similar to those shown in [8, 5].

4.3 Example 3. 2D Burgers' Equation

The last example is devoted to the two dimensional Burgers' equation to be solved in the

square domain [-1, 1] × [-1, 1] with initial condition Uo(x,y) = sin 27rr, where r = v/_ + y2,

1 In figure (14), we visualize the solutionsfor r < ¼, and Uo(z, y) = 0 outside the disc r = _.

obtained by the (3,2)CD scheme, followed by 4 iterations of ENO-LS correction steps. In

that experiment, we use (p_, py, q) = (6, 6, 2), so that the local rectangle in which the two

dimensional ENO-LS stencil of points is taken contains 36 mesh points. Note that a speed up

factor of nearly 1.5 is obtained by using the two dimensional ENO-LS method instead of the

one dimensional splitting version. In this numerical example, the amplitude of the numerical
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Figure 11: (3,2)CD scheme + 7 ENO-LS method (p,q)=(13,3).

oscillations which propagate radially away from the initial shock location was approximately

! of the strength of the shock, yet the ENO-LS method recovered the nonoscillatory accurate3

solution quite well.

5 Concluding Remarks

The notion of using an essentially nonoscillatory (ENO) least squares filter to remove spu-

rious oscillations of data generated by numerical overshoot appears promising. Tuning of

parameters is, however, still required. Future work will deal with this issue.
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